

SUGGESTED SOLUTION

FYJC 2020

SUBJECT- MATHEMATICS

Test Code - FYJ 6087

BRANCH - () (Date :)

Head Office : Shraddha, 3rd Floor, Near Chinai College, Andheri (E), Mumbai – 69. Tel : (022) 26836666

ANSWER:1

(a)	If <i>n</i> is even, $n = 2k$ S _{2k} = $(3 - 3) + (3 - 3) + (3 - 3) + \dots + (3 - 3) = 0$.	
	If n is odd, $n = 2k + 1$	
	$S_{2k+1} = S_{2k} + t_{2k+1} = 0 + 3 = 3.$	(02)
(b)	Here $a = 1, r = -3$	(02)
	AS $ r \neq 1$	
	∴ Sum to infinity does not exist.	(02)
(c)) let A_1 , A_2 , A_3 , A_4 be 4 arithmetic means between 2 and 22	(02)
	\therefore 2, A ₁ , A ₂ , A ₃ , A ₄ , 22 are in AP with	
	$a = 2, t_6 = 22, n = 6.$	
	$\therefore 22 = 2 + (6 - 1) d = 2 + 5d$	
	20 = 5d, d = 4	
	$A_1 = a + d = 2 + 4 = 6$,	
	$A_2 = a + 2d = 2 + 2 \times 4 = 2 + 8 = 10$,	
	$A_3 = a + 3d = 2 + 3 \times 4 = 2 + 12 = 14$	
	$A_4 = a + 4d = 2 + 4 \times 4 = 2 + 16 = 18.$	
	\therefore the 4 arithmetic means between 2 and 22 are 6 , 10, 14, 18.	
(d) $r = \frac{1}{3}$ Here $a = \frac{1}{3}, r = \frac{1}{3}, r < 1$	(02)

 \therefore Sum to infinity exists.

$$S = \frac{a}{1-r} = \frac{\frac{1}{3}}{1-\frac{1}{3}} = \left[\frac{\left(\frac{1}{3}\right)}{\left(\frac{2}{3}\right)}\right] = \frac{1}{2}$$
(02)
(e) $S_n = 5115 = 5\left(\frac{2^n-1}{2-1}\right) = 5(2^n-1).$
 $\therefore \frac{5115}{5} = 1023 = 2^n - 1$
 $2^n = 1024 = 2^{10}$
 $\therefore n = 10$
(f) $S_{10} = a\left(\frac{1-2^{10}}{1-2}\right) = a(1023),$
 $\therefore a = 1$
(02)

ANSWER:2

(a) Let the required numbers be $\frac{1}{H_1}$ and $\frac{1}{H_2}$ $\therefore \frac{2}{9}, \frac{1}{H_1}, \frac{1}{H_2}, \frac{1}{12}$ are in H.P. $\frac{9}{2}, H_1, H_2$ 12 are in A.P. $t_1 = a = \frac{9}{2}, t_4 = 12 = a + 3d = \frac{9}{2} + 3d.$ $3d = 12 - \frac{9}{2} = \frac{24 - 9}{2} = \frac{15}{2}$ $d = \frac{5}{2}$ $t_2 = H_1 = a + d = \frac{9}{2} + \frac{5}{2} = \frac{14}{2} = 7.$ $t_3 = H_2 = a + 2d = \frac{9}{2} + 2 \times \frac{5}{2} = \frac{19}{2}...$ For resulting sequence $\frac{1}{7}$ and $\frac{2}{19}$ are to be Inserted between $\frac{2}{9}$ and $\frac{1}{12}$

(03)

(02)

 5^{n-2}

$$t_{n} = \frac{4^{n-3}}{4^{n-3}}$$

$$t_{n+1} = \frac{5^{n-1}}{4^{n-2}}$$
Consider $\frac{t_{n+1}}{t_n} = \frac{\frac{5^{n-1}}{4^{n-2}}}{\frac{5^{n-2}}{4^{n-3}}}$

$$= \frac{5^{n-1}}{4^{n-2}} \times \frac{4^{n-3}}{5^{n-2}} = \frac{5}{4} = \text{constant},$$

 $\forall \ n \in N.$

The given sequence is a G.P. with $r = \frac{5}{4}$ and $t_1 = a = \frac{5^{1-2}}{4^{1-3}} = \frac{5^{-1}}{4^{-2}} = \frac{16}{5}$.

(03)

(c) (i) 0.666666.... = 0.6 + 0.06 + 0.006 + ...

 $=\frac{6}{10}+\frac{6}{100}+\frac{6}{1000}+\dots$,

the terms are in G.P. with a = 0.6, r = 0.1 < 1

... Sum to infinity exists and is given by

 $\frac{a}{1-r} = \frac{0.6}{1-0.1} = \frac{0.6}{0.9} = \frac{6}{9} = \frac{2}{3}$

(ii) $0.\overline{46} = 0.46 + 0.0046 + 0.000046 + \dots$ the terms are in G.P. with a = 0.46, r = 0.01 < 1.

.:. Sum to infinity exists

$$=\frac{a}{1-r} = \frac{0.46}{1-(0.01)} = \frac{0.46}{0.99} = \frac{46}{99}$$

(d) Let the four numbers be $\frac{a}{r^3}$, $\frac{a}{r}$, ar, ar^3 (common ratio is r²)

According to the first condition

$$\frac{a}{r^3} \times \frac{a}{r} \times ar \times ar^3 = 64$$
$$\cdot a^4 = 64$$

(03)

 $\therefore a = 2\sqrt{2}.$

Now using second condition $\frac{a}{r} + ar = 6$ $\frac{2\sqrt{2}}{r} + 2\sqrt{2}r = 6$, dividing by 2 we get, $\frac{\sqrt{2}}{r} + \sqrt{2}r = 3$ now multiplying by r we get $\sqrt{2} + \sqrt{2}r^2 - 3r = 0$ $\sqrt{2}r^2 - 3r + \sqrt{2} = 0$, $\sqrt{2}r^2 - 2r - r + \sqrt{2} = 0$, $\sqrt{2}r(r - \sqrt{2}) - 1(r - \sqrt{2}) = 0$. $r = \sqrt{2}$ or $r = \frac{1}{\sqrt{2}}$ If $a = 2\sqrt{2}$, and $r = \sqrt{2}$ then 1, 2, 4, 8 are the four required numbers

If a = $2\sqrt{2}$, and r = $\frac{1}{\sqrt{2}}$ then 8, 4, 2, 1 are the four required numbers in G.P. (03)

ANSWER: 3

(a) Let S_n

$$= 5 + 55 + 555 + 5555 + \dots \text{ upto n terms}$$

$$= 5(1 + 11 + 111 + \dots \text{ upto n terms})$$

$$= \frac{5}{9}(9 + 99 + 999 + \dots \text{ upto n terms})$$

$$= \frac{5}{9}[(10 - 1) + (100 - 1) + (1000 - 1) + \dots \text{ to n brackets}]$$

$$= \frac{5}{9}[(10 + 100 + 1000 + \dots \text{ upto n terms})]$$

$$- (1 + 1 + 1 + \dots \text{ upto n terms})]$$

$$= \frac{5}{9}[10\left(\frac{10^{n} - 1}{10 - 1}\right) - n]$$

$$\begin{aligned} &= 5(4^n - 1) - 5(4^{n-1} - 1) \\ &= 5(4^n - 5 - 5(4^{n-1}) + 5 \\ &= 5(4^n - 4^{n-1}) \\ &= 5(4^n - (1 - \frac{1}{4}) \\ &= 5(4^n) \left(\frac{3}{4}\right) \\ &\therefore t_{n+1} = 5(4^{n+1}) \times \frac{3}{4} \end{aligned}$$
Consider $\frac{t_{n+1}}{t_n} = \frac{5(4^{n+1})}{5(4^n)} = 4 = \text{constant}, \\ &\forall n \in \mathbb{N}. \end{aligned}$

$$\therefore r = 4$$

$$\therefore \text{ the sequence is a G.P.$$
(04)
(c) Given $A = G + 2$ $\therefore G = A - 2$
 $A \log A = H + \frac{18}{5}$ $\therefore H = A - \frac{18}{5}$
 $We know that G^2 = A H$
 $(A - 2)^2 = A(A - \frac{18}{5})$
 $A^2 - 4A + 2^2 = A^2 - \frac{18}{5}A$
 $\frac{18}{5}A - 4A = -4$

(04)

 $=\frac{5}{9}\left[\frac{10}{9}\left(10^{n}-1\right)-n\right]$

(b) $S_n = 5(4^n - 1), S_{n-1} = 5(4^{n-1} - 1)$

We know that $t_n = S_n - S_{n-1}$

 $-2A = -4 \times 5, \therefore A = 10$ Also G = A - 2 = 10 - 2 = 8 $\therefore A = \frac{x+y}{2} = 10, x + y = 20, y = 20 - x \dots (i)$ Now G = $\sqrt{xy} = 8 \quad \therefore xy = 64$ $\therefore x (20 - x) = 64$ $20 x - x^{2} = 64$ $x^{2} - 20x + 64 = 0$ (x - 16) (x - 4) = 0 x = 16 or x = 4 $\therefore \text{ If } x = 16, \text{ then } y = 4 \quad \therefore y = 20 - x$ $\therefore \text{ If } x = 4, \text{ then } y = 16.$

The required numbers are 4 and 16.

(d) Let the three numbers be $\frac{a}{r}$, *a*, *ar*.

According to first condition their sum is 42.

$$\therefore \frac{a}{r} + a + ar = 42$$

$$a \left(\frac{1}{r} + 1 + r\right) = 42$$

$$\therefore \frac{1}{r} + 1 + r = \frac{42}{a}$$

$$\frac{1}{r} + r = \frac{42}{a} - 1.....(1)$$
From the second condition their product is 1728
$$\frac{a}{r} \cdot a \cdot ar = 1728$$

$$\therefore a^3 = 1728 = (12)^3$$

(04)

∴ a = 12. Substitute a = 12 in equation (1), we get $\frac{1}{r} + r = \frac{42}{12} - 1$ $\frac{1}{r} + r = \frac{42 - 12}{12}$ $\frac{1}{r} + r = \frac{30}{12}$ $\frac{1+r^2}{r} = \frac{5}{2}$ $\therefore 2 + 2r^2 = 5r$ $\therefore 2r^2 - 5r + 2 = 0$ \therefore (2r - 1) (r - 2) = 0 \therefore 2r = 1 or r = 2 \therefore r = $\frac{1}{2}$ or r = 2

Now if a = 12, and r = $\frac{1}{2}$ then the required numbers are 24, 12, 6.

(04)